Mark Scheme (Results)
Summer 2013

GCSE Chemistry (5CH2H) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2013
Publications Code UG036875
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- For questions worth more than one mark, the answer column shows how partial credit can be allocated. This has been done by the inclusion of part marks eg (1).
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- Write legibly, with accurate spelling, grammar and punctuation in order to make the meaning clear
- Select and use a form and style of writing appropriate to purpose and to complex subject matter
- Organise information clearly and coherently, using specialist vocabulary when appropriate.

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i)}$	C cations in a sea of electrons		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (\text { ii) }}$	(metals have) high melting point	a lot of energy needed to break/overcome (metallic) bonds energy needed to break/overcome strong (metallic) bonds	
	Ignore references to boiling point Reject reference to intermolecular forces/covalent (bonds) /attraction between ions/breaking ionic bonds/ breaking covalent bonds	(1)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (\text { iii) }}$	An explanation including two of the following points argon is inert/ does not react/is unreactive (1)	Ignore argon is in group 0/8 argon is a noble gas Ignore argon does not burn because it has 8 electrons in its outer shell (1)	does not \{gain/lose/share electrons has a full outer shell (of electrons) has a stable electron configuration
- metals would react in/with air/oxygen (1)	argon will exclude air from welding point (1)	form (metal) oxide	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b)}$	$2 \mathrm{Fe}+3 \mathrm{Br}_{2} \rightarrow 2 \mathrm{FeBr}_{3}$		
	M1 Correct symbol/formulae (1) M2 balancing of correct symbol/formulae (1)	Reject incorrect use of upper/lower case / subscripts for M1 but allow ECF for M2	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c)}$	C - grey solid		

Question Number	Answer	Acceptable answers	Mark
1(d)	A explanation including M1 order of reactivity chlorine > bromine > iodine (1) and M2 one of the following points - chlorine displaces bromine (from bromide) AND chlorine displaces iodine (from iodide) (1) - bromine displaces iodine (from iodide) AND bromine does not displace chlorine (from chloride) (1) - iodine does not displace chlorine(from chloride) AND iodine does not displace bromine (from bromide) (1)	For M1 reject reference to reactivity of halide ions eg chlorine more reactive than bromide halogens/they decrease in reactivity down the group/table chlorine is most reactive and iodine is least reactive Ignore reference to displacement of halide ions eg chlorine displaces bromide Ignore "replaces" chlorine reacts with bromide AND iodide chlorine takes part in two (displacement) reactions bromine reacts with iodide AND does not react with chloride bromine takes part in one (displacement) reactions iodine does not react with chloride or bromide iodine does not take part in any (displacement) reactions	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i)}$	fractional distillation		(1)

Question Number	Answer	Acceptable answers	Mark
2(a)(ii)	to make it liquid	liquefy/condense to remove water (vapour) to remove carbon dioxide	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b)}$	D weak forces of attraction between the oxygen molecules		(1)

Question Number	Answer	Acceptable answers	Mark
2(c)(i)	An description including • shared (electrons) (1) pair(s) of electrons (between atoms) (1)	Ignore reference to complete/full shells Ignore reference to between two metals Ignore reference to between metal and non-metal Ignore reference to between molecules Any reference to between ions scores 0	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (c) (i i)}$	2.4		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (c) (\text { iii) }}$	diagram showing any shared pair of electrons between a carbon and oxygen atom in CO_{2} molecule (1)	Must have O C O arrangement correct	
	- rest of molecule correct (1)	Ignore inner electrons even if wrong electrons can be on/in ring or no ring Ignore intersecting circles	Accept all permutations of dots and crosses

Question Number	Answer	Acceptable answers	Mark
3(a)	A description including:		
	- add (dilute) (hydrochloric) acid (1) gas/carbon dioxide (passed into/tested) with limewater (1) limewater goes milky / cloudy / white ppt (1)	correct formulae heat/thermally decompose	dependent on use of limewater through limewater

Question Number	Answer	Acceptable answers	Mark	
$\mathbf{3 (b)}$	$40+[2 \times 35.5]$	$(=111)$	111 alone	(1)

Question Number	Answer	Acceptable answers	Mark
3(c)	$100(\mathrm{~kg})$ (calcium carbonate) $(106(\mathrm{~kg})$ (sodium carbonate) (1)	OR alternative $106 \div 100$ $40000 \div 100 / 40 \div 100(\mathrm{moles}$ approach)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (d) (i)}$	$\bullet 10.4 / 15.0$ (1)		
	$(10.4 / 15.0) \times 100(1)(=69.3)$	69.3 alone worth 2 marks If no/incomplete working shown answer to 2 or more sf scores 2 marks Ignore any units	(2)

Question Number	Answer	Acceptable answers	Mark
3(d)(ii)	Two suggestions from - reaction incomplete (1) - impure reactants (1) - other unwanted/side reaction(s) occur (1) - product lost during experiment/practical	reversible ignore by-products form could be an example eg some products left in apparatus ignore generic experimental errors eg measuring/weighing errors/human error/spillage	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a) (i)}$	C T		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a) (i i)}$	C Q and S		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (b) (i)}$	number of protons (in nucleus of atom)	ignore number of electrons eg number of protons and electrons worth (1)	(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	An explanation including	(atoms of) both contain 5	
/same number of			
protons/same atomic number			
(1)	-boron-10 atoms contain 5 neutrons but boron-11 atoms contain 6 neutrons / different numbers of neutrons/ different mass number (1)boron-11 atoms contain 1 more neutron / boron-10 atoms contain 1 less neutron	(2)	

Question Number	Answer	Acceptable answers	Mark
4(c)(i)	An explanation including the following - M1 \{average/mean\} mass (of atoms of an element) (1)	For M1 reject weight reject if mass of molecule reject if mass of neutrons and protons	
	M2 compared to \{1/12 mass carbon-12 (atom)/ (mass of) carbon-12 (atom) taken as $12\}(1)$	any reference to carbon-12 scores mark	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (c) (i i)}$	$[19.7 \times 10](1)+[80.3 \times 11](1)$ $/ 100(1)(=10.8)$ $[0.197 \times 10](1)+[0.803 \times 11](1)=$ $[1.97+8.83](1)(=10.8)$	If no working shown 10.8(03) worth 3 marks	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i)}$	B lead chloride		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (\text { ii) }}$	An explanation linking two of	Any reference to molecules/molecular/intermolecul ar/covalent scores 0 marks	
	- strong (electrostatic) forces of attraction between oppositely charged ions so requires lot of heat/energy to overcome forces/break bonds	positive and negative ions reject charged atoms for this mark	ignore hard to melt/high temperature needed

Question Number	Answer	Acceptable answers	Mark
5(a)(iii)	A description including - M1 add (dilute) nitric acid - M2 add silver nitrate (solution) - M3 forms white ppt/solid	Accept correct formulae If use any other acid can score M2 and M3 dependent on use of silver nitrate Alternative method: Electrolyse (1) Chlorine formed (1) Bleaches litmus/pH paper (1) Ignore smell	(3)

Question Number		Indicative Content ${ }^{\text {a }}$ Mark
QWC	5(b)	A description including some of the following points ion formation - magnesium atoms lose electrons - each magnesium atom loses two electrons - to acquire full outer shell - magnesium (configuration) becomes 2.8 - forms Mg^{2+} ion - electrons transferred to oxygen atoms - oxygen atoms gain electrons - each oxygen atom gains two electrons - oxygen (configuration) becomes 2.8 - to acquire full outer shell - forms O^{2-} ion structure - magnesium ions attract oxide ions - due to opposite charges - ions pack close together - ratio of ions 1: 1 - ions arranged in lattice - giant (ionic) (structure)
Level	0	No rewardable content
1	1-2	- a limited description e.g. magnesium atoms lose electrons and oxygen atoms gain electrons e.g. magnesium oxide is a giant structure - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy
2	3-4	- a simple description e.g. magnesium atoms lose two electrons to form positive ions and oxygen atoms gain two electrons to form negative ions - e.g. magnesium atoms lose electrons and oxygen atoms gain electrons and magnesium oxide is a giant structure - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy
3	5-6	- a detailed description e.g. each magnesium atom transfers two electrons to an oxygen atom and the opposite charged ions $\left(\mathrm{Mg}^{2+} / \mathrm{O}^{2-}\right.$) formed attract each other to form a giant (ionic) lattice - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{6 (a) (i)}$	$\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}$ 4$+\mathrm{H}_{2}$				
reactants (1)					
products (1)				\quad	Accept multiples
:---					
If not correctly balanced max 1					
Must be subscripts where					
relevant	\quad (2)				
:---					

Question Number		Indicative Content	Mark
QWC	*6(a)(ii)	A description including some of the following points general points - reactions occur when particles collide - more frequent collisions cause higher rate of reaction - mass and size of zinc pieces same so no effect on rate of reaction - because same surface area - two factors have been altered in the same experiment - cannot be certain of effect of each concentration - experiment 2 higher/triple concentration of acid - so more particles (in same volume) - so more frequent collisions between particles - more successful collisions temperature - experiment 2 higher temperature - particles move faster - particles have more energy - so more frequent collisions between particles (so increased rate) - more successful collisions - so more energetic collisions between particles - more particles have enough energy to react (activation energy) when they collide	
Level	0	No rewardable content	
1	1-2	- a limited description e.g. temperature is higher and concentration is higher so reaction is faster e.g. temperature is higher so particles move faster reaction is faster - the answer communicates ideas using simple langua uses limited scientific terminology - spelling, punctuation and grammar are used with lim accuracy	and ed
2	3-4	a simple description e.g. temperature is higher so particles move faster concentration is higher so more particles so reaction is fas eg when concentration is higher there will be more particles so more frequent collisions so faster reacti e.g. when temperature is higher particles move fas more successful collisions so faster reaction - the answer communicates ideas showing some evid clarity and organisation and uses scientific terminol	nd ter so nce of y

		appropriately spelling, punctuation and grammar are used with some accuracy
$\mathbf{3}$	$\mathbf{5 - 6}$	- a detailed description e.g. higher concentration of acid so more particles so more frequent collisions so faster reaction and higher temperature so particles have more energy so more successful collisions so faster reaction the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (b) (i)}$	B displacement		(1)

Question Number	Answer	Acceptable answers	Mark
6(b)(ii)	Shown on diagram - horizontal reactant line above product line (1) - horizontal product line to right of reactant line (1)	lines must be correctly labelled eg reactants $/ \mathrm{Zn}+\mathrm{CuSO}_{4}$ and products/ CuSO_{4} and Cu ignore any extra lines/curves/labels if not drawn lines but just labels in correct relative positions max 1 If two lines drawn in correct positions but no labels max 1	(2)

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG036875 Summer 2013
 Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

